Efficiënt lassen van roestvast staal aan laag- en hooggelegeerd koolstofstaal: Tips en technieken
Lasverbindingen tussen on- en laaggelegeerd constructiestaal en austenitisch chroomnikkelstaal worden in de volksmond zwart-witverbindingen genoemd. Zwart staat voor constructiestaal, wit staat voor roestvast staal. Er zijn tal van factoren waarmee rekening moet worden gehouden om een betrouwbare lasverbinding te maken met het optimaal gekozen toevoegmateriaal.
Een belangrijke uitdaging bij deze lassen is de mogelijke aantasting van de corrosiebestendigheid van het roestvast staal door de aanwezigheid van koolstof aan de koolstofstaalzijde. Bovendien bestaan er aanzienlijke verschillen in de fysische en mechanische eigenschappen van roestvast staal en koolstofstaal, waardoor voorzichtigheid geboden is om een martensitisch lasmetaal te vermijden dat gevoelig is voor brosheid. Bovendien kunnen er temperatuur- en tijdsafhankelijke structurele veranderingen optreden, zoals sigma fase verbrossing.
In tegenstelling tot het lassen van on- en laaggelegeerd staal wordt hier het toevoegmateriaal gekozen door het hoogst gelegeerde basismateriaal.
Een belangrijke factor voor het verkrijgen van het juiste lasmetaal is opmenging. Bij het lassen treedt opmenging op tussen het basismateriaal en het toevoegmateriaal. Opmenging wordt uitgedrukt in procenten (%) en is afhankelijk van het lasproces en de lasparameters.
Of
| SAW - Strip | 15% -25% |
| ES - Strip | 5%- 15% |
| SAW- draad | 40% - 50% |
| Electrode | 15% - 30% |
| Mig / MAG | 25% - 40% |
| Tig met toevoeg | 20% - 40% |
| Tig zonder toevoeg | 100% |
B1 10% en B2 10% Lastoevoegmateriaal F1 80%
De opmenging hangt af van het lasproces en de lasparameters. Idealiter zou de opmenging met het basismateriaal geminimaliseerd moeten worden, bijvoorbeeld door de energie van de las te verminderen met behulp van geoptimaliseerde lasparameters. Om dat te bereiken moet met het volgende rekening worden gehouden:
- Lage stroomsterkte, spanning en hoge lassnelheid om een lage warmte-inbreng te bereiken
- Lassen in snoeren
- Gebruik van kleine elektrodediameters
- Gecontroleerde voorverwarm- en tussenlaagtemperaturen.
Houd er rekening mee dat de vlamboog niet op het ferritische basismateriaal moet worden gericht, maar op het reeds gesmolten lasmetaal.
De keuze van het juiste lastoevoegmateriaal hangt af van veel dingen: het type materiaal, de bedrijfstemperatuur en de corrosiebestendigheid. Bij het lassen van Zwart-Wit verbindingen moet rekening worden gehouden met het volgende:
- Gebruik een lasproces met lage opmening en de juiste parameters
- Bij legeringstype 18 8 Mn is er geen risico op warmscheuren door het verhoogde Mn-gehalte.
- Geen warmtebehandeling na het lassen en gebruik tot maximaal 300°C in bedrijf (omdat de vorming van een Cr-carbide zone en een ontkoolde zone te verwachten is bij hogere temperaturen, wat de sterkte vermindert!)
- Let vooral op een lage opmenging
- Ook geschikt voor toepassingstemperaturen boven 300°C
- Ook geschikt voor PWHT
- Bufferen van de naadflank van het laaggelegeerde basismateriaal met een Ni-basis legering
- Het uitvoeren van de noodzakelijke warmtebehandeling na het lassen, bijv. ontlaten of spanningsarmgloeien
- Lassen van de lasnaad tussen de Ni-basis bufferlaag en het hooggelegeerde materiaal met toevoegmetaal op nikkelbasis
In de literatuur kun je hulp vinden voor een eerste keuze voor de selectie van lasmetalen, een classificatie volgens Prof. Hermann Thier is hier zeer geschikt.
| gr. | kenmerken van de blootstelling |
Problemen | Materiaal | CEWELD product GMAW / Tig / Electrode |
| 1 | T < 300°C Mechanische belasting Geen warmtebehandeling |
Martensietvorming Hardingsscheuren Warmscheuren Taaiheid |
18 8 Mn / 1.4370 / 307 23 12 / 1.4332 / 309 23 12 Mo / 1.4459/ 309LMo 29 9 / 1.4337 / 312 |
CEWELD 307Si / 307 Si Tig / 4370 Ti CEWELD 309LSi / 309LSi Tig / 4332 Ti CEWELD 309LMo / 309LMo Tig / 4829 MoTi CEWELD 312 / 312 Tig / CroNi 29/9 S |
| 2 | T < 300°C Mechanische belasting Geen warmtebehandeling + Corrosie spanning Mogelijk met warmtebehandeling |
23 12 L Sluitlaag volgens |
CEWELD 309LSi / 309LSi Tig / 4332 Ti CEWELD 309LMo / 309LMo Tig / 4829 MoTi |
|
| 3 | T > 300°C + Mechanische belasting Geen warmtebehandeling + Corrosie spanning Mogelijk met warmte behandeling Of afwisselende temperatuurspanning |
Koolstofdiffusie Rekgrens Hittebestendigheid Spanningen door verschillende thermische uitzettingscoëfficiënten |
Ni –Alloy e.g. NiCr20 Nb 2.4648 / 2.4806 / 2.4831 |
CEWELD NiCro 600 / NiCro 600 Tig / E NiCro 600 CEWELD NiCro 625 / NiCro 625 Tig / E NiCro 625 |
Het Schaeffler-diagram is een nuttig hulpmiddel om de microstructuur te voorspellen. Als algemene regel geldt dat de samenstelling van het lasmetaal verplaatst moet worden naar minder kwetsbare gebieden. Het is raadzaam om het gebied met martensietgehalte te vermijden, omdat hier verbrossingsverschijnselen optreden die tot scheurvorming kunnen leiden. De keuze van het lastoevoegmateriaal wordt ook beperkt door het feit dat het resulterende lasmetaal zich niet in het austenietgebied mag bevinden, omdat er een risico bestaat op warmscheuren tijdens het stollen in het geval van zuiver austenitische fasevorming. Als de resulterende lasmetaallegering te ver naar rechts ligt in het Schaeffler-diagram, zal sigma-fasevorming optreden, vooral bij verhoogde temperaturen tijdens later gebruik. Dit is aanwezig in een zeer brosse vorm en leidt ook tot een lasnaadgevaar. In het midden van het diagram blijft een relatief klein gebied over.
Bij het werken met het Schaeffler-diagram moeten de grenzen voor de legeringelementen in acht worden genomen..
Dit zijn C < 0,2 % S i < 1 % Mn < 4,0 % Mo < 3 % Nb < 1,0 %
Voorbeeld
| Nr | Gebruikte materialen | W.Nr | C | Si | Mn | Cr | Ni | Mo | CrA | NiA |
| 1 | P310GH ( Ferriet ) | 1.0482 | 0,20 | 0.50 | 1,20 | - | - | - | 0,75 | 6,6 |
| 2 | X15CrNiSi25-21 ( Austeniet) | 1.4841 | 0,15 | 2,0 | 1,60 | 25 | 21 | - | 28 | 26,3 |
| 3 | 23 12 L / 309L Lastoevoegmateriaal | 1.4332 | 0,02 | 0,8 | 0,8 | 24 | 13 | - | 25,2 | 14,0 |
De punten die resulteren uit de nikkel- en chroomequivalenten voor basismaterialen 1 en 2 worden ingevoerd in het Schaeffler-diagram (zie figuur) en met elkaar verbonden. Ervan uitgaande dat beide basismaterialen in gelijke verhoudingen worden gesmolten, komt het midden van de rechte lijn overeen met de microstructuur van het gemengde basismateriaal (punt A).
Uit de positie van dit punt kan worden afgeleid dat TIG-lassen zonder toevoegmateriaal niet geschikt zou zijn. In dit geval zou het punt overeenkomen met het lasmetaalpunt en in de gevarenzone voor warmscheuren liggen.
Het microstructuurpunt 3 van het lastoevoegmateriaal is ook in het diagram getekend en verbonden met punt A van het Lastoevoegmateriaal. De lengte van de rechte lijn wordt nu verondersteld 100% te zijn en het aandeel van het Lastoevoegmateriaal voor het gebruikte lasproces (beklede elektrode ca. 20%) wordt afgetrokken van de kant van het Lastoevoegmateriaal (punt 3). Dit resulteert in punt B voor de gemengde structuur = gemengd lasmetaal (rood).
Voor het bovenstaande voorbeeld moet ook rekening worden gehouden met de toepassingstemperatuur van het onderdeel, die niet hoger mag zijn dan 300 °C. Vulmetalen op nikkelbasis verdienen de voorkeur bij hogere bedrijfstemperaturen. De positie van het toevoegmetaal buiten het Schaeffler-diagram laat echter geen berekening toe.
De combinatie van afgeschrikt en getemperd staal en austenitisch vereist het gebruik van lastoevoegmaterialen op nikkelbasis vanwege de beperkte lasbaarheid van de afgeschrikte en getemperde staalsoorten en de warmtebehandeling na het lassen die over het algemeen vereist is. In dergelijke gevallen wordt aanbevolen om 3-laags cladding (buffering) van de lasflanken van het afgeschrikte en getemperde staal en daaropvolgend gloeien uit te voeren. Uitzonderingen hierop zijn mogelijk als er geen warmtebehandeling wordt uitgevoerd. In dergelijke gevallen kunnen echte overgelegeerde lastoevoegmaterialen worden gebruikt, op voorwaarde dat een bedrijfstemperatuur van max. 400 °C niet wordt overschreden.
Bij de keuze van het lastoevoegmateriaal moet rekening worden gehouden met de chemische samenstelling van de hoger gelegeerde materiaal. Het Schaeffler-diagram kan een waardevolle leidraad zijn om het risico op scheuren te minimaliseren.
Deze combinatie kan ook worden gecontroleerd met behulp van het Schaeffler-diagram. Het lastoevoegmateriaal is afhankelijk van de bedrijfsomstandigheden. Austenitische toevoegmaterialen moeten daarom worden gespecificeerd rekening houdend met hun neiging tot verbrossing. In bepaalde gevallen kan het gebruik van nikkelhoudende toevoegmaterialen noodzakelijk zijn.
Er moeten lastoevoegmaterialen worden gebruikt die qua legering overeenkomen met het hittebestendige materiaal. Het Schaeffler-diagram is hier ook nuttig.
Helaas is het Schaeffler-diagram hier niet of slechts gedeeltelijk van toepassing. Er bestaat een risico op verbrossing tijdens het gloeien of bij de gebruikelijke bedrijfstemperaturen. Een lastoevoegmateriaal op nikkelbasis zoals CEWELD E NiCro 600 of CEWELD NiCro 600 zou hier worden aanbevolen.