

CEWELD SA Alloy 825 strip

certilas® THE FILLER METAL SPECIALIST

TYPE	Nickel-Chromium-Molybdenum solid strip																																
APPLICATIONS	SA Nicro 825 is a nickel-iron-chromium-molybdenum-copper cladding alloy for use in extremely corrosive environments.																																
PROPRIÉTÉS	Fully austenitic weld metal with high resistance against stress corrosion cracking and pitting in media containing chloride ions. Good corrosion resistance against reducing acids due to the combination of Ni, Mo and Cu. Sufficient resistance against oxidizing acids. The weld metal is corrosion resistant in sea water. The nickel content of this alloy makes it resistant to chloride-ion stress-corrosion cracking. Additions of molybdenum and copper give alloy 825 resistance to pitting and to corrosion in reducing acid environments such as sulphuric or phosphoric acid solutions. The alloy's chromium content gives it resistance to various oxidizing environments, such as nitrates, nitric acid solutions and oxidizing salts. The excellent corrosion-resistant properties of Alloy 825 make the alloy a suitable choice for a variety of difficult applications. Uses include fabricated equipment found in chemical and petro-chemical processing, pulp and paper manufacturing, flue gas desulphurization systems and metal pickling operations. SA Alloy 825 strip is developed for cladding lower alloyed or steel parts to obtain protection against the earlier mentioned attacks for high quality tank and apparatus construction in the chemical industry. Flux Fl 860 ESHC																																
CLASSIFICATION	AWS A 5.14: EQNiFeCr-1 EN ISO 18274: B Ni 8065 (NiFe30Cr21Mo3) W.Nr. 2.4858																																
CONVIENT POUR	SA Alloy 825 is specially designed for cladding lower alloyed parts to obtain a high quality clad layer against corrosion. Designations: 825 (2.4858, UNS N08825), 1.4500, 1.4529, 1.4539, 2.4858, 1.4563, G-X7NiCrMoCuNb 25 20, X1NiCrMoCuN25 20 6, X1NiCrMoCuN25 20 5, NiCr21Mo, X1NiCrMoCu 31 27 4, N08926, N08904, ALLOY 825, N08028, UNS N08825																																
AGRÉMENTS																																	
POSITIONS DE SOUDAGE																																	
ANALYSE CHIMIQUE TYPIQUE DU MÉTAL D'APPORT (%)	<table><thead><tr><th>C</th><th>Si</th><th>Mn</th><th>P</th><th>S</th><th>Cr</th><th>Ni</th><th>Mo</th><th>Ti</th><th>Fe</th><th>Cu</th></tr></thead><tbody><tr><td>0.025</td><td>0.4</td><td>0.8</td><td>0.02</td><td>0.02</td><td>22</td><td>44</td><td>2.8</td><td>1</td><td>25</td><td>2.5</td></tr></tbody></table>											C	Si	Mn	P	S	Cr	Ni	Mo	Ti	Fe	Cu	0.025	0.4	0.8	0.02	0.02	22	44	2.8	1	25	2.5
C	Si	Mn	P	S	Cr	Ni	Mo	Ti	Fe	Cu																							
0.025	0.4	0.8	0.02	0.02	22	44	2.8	1	25	2.5																							
PROPRIÉTÉS MÉCANIQUES																																	
ETUVAGE	Not required																																
GAS ACC. EN ISO 14175																																	