

CEWELD AA 308H

TYPE	Rutile fluxcored stainless steel wire with high carbon content. (Type 308H, 19 9)																							
APPLICATIONS	Welding stainless steel types with an alloy content between 16 to 21% Cr and 8 to 13 % Ni, with high carbon content. The names 18-8, 19-9, and 20-10 are often associated with filler metals of this classification.																							
PROPERTIES	Smooth drop transfer and stable arc with no spatter losses. Excellent productivity and weldability, better wetting properties compared to solid wires. Excellent weld metal quality and X-ray soundness and excellent slag removal. Excellent for use in horizontal and down hand position																							
CLASSIFICATION	AWS A 5.22: E308HT0-4, A 5.22: E308HT0-1 EN ISO 17633-A: T 19 9 H R M21 3 W.Nr. 1.4302 F-nr 6 FM 5																							
SUITABLE FOR	ISO 15608: 8.1 Austenitic \leq 19 % Cr 9 % Ni, , TÜV 1000: Gr. 21 1.4301, 1.4308, 1.6900, 1.6901, 1.6902, 1.6903, 1.9606 X 5 CrNi 18 10, X 5 CrNi 18 9, G-X 6 CrNi 18 9, X 12 CrNi 18 9, G-X 8 CrNi 18 10, X 6 CrNi 18 10, X 10 CrNiTi 18 10, X 5 CrNi 18 10 AISI 304, 304H, 312, 321H, 347, 347H, UNS S30409, S32109, S34709, S30400, S32100, S34700																							
APPROVALS	CE																							
WELDING POSITIONS																								
TYPICAL CHEMICAL ANALYSIS OF WELD METAL (%)	<table><tr><td>C</td><td>Si</td><td>Mn</td><td>P</td><td>S</td><td>Cr</td><td>Ni</td><td>Mo</td></tr><tr><td>0.06</td><td>0.9</td><td>1</td><td>0.015</td><td>0.008</td><td>19</td><td>10</td><td>0.3</td></tr></table>								C	Si	Mn	P	S	Cr	Ni	Mo	0.06	0.9	1	0.015	0.008	19	10	0.3
C	Si	Mn	P	S	Cr	Ni	Mo																	
0.06	0.9	1	0.015	0.008	19	10	0.3																	
MECHANICAL PROPERTIES	<table><thead><tr><th>Heat Treatment</th><th>$R_{P0,2}$ (MPa)</th><th>R_m (MPa)</th><th>A5 (%)</th><th colspan="2">Impact Energy (J) ISO-V</th><th>Hardness</th></tr><tr><th>As Welded</th><th>450</th><th>630</th><th>36</th><th>RT</th><th>80</th><th>HRc</th></tr></thead></table>								Heat Treatment	$R_{P0,2}$ (MPa)	R_m (MPa)	A5 (%)	Impact Energy (J) ISO-V		Hardness	As Welded	450	630	36	RT	80	HRc		
Heat Treatment	$R_{P0,2}$ (MPa)	R_m (MPa)	A5 (%)	Impact Energy (J) ISO-V		Hardness																		
As Welded	450	630	36	RT	80	HRc																		
REDRYING	140°C / 24 hr																							
GAS ACC. EN ISO 14175	M21																							